Created at 6pm, Jan 4
kFTgSHfQArtificial Intelligence
0
Artificial intelligence methods for the diagnosis of breast cancer by image processing: a review
0vedd5h114DdTWW1F9rXDoWr2H2e-ksfqIdKpGZyPAo
File Type
PDF
Entry Count
63
Embed. Model
jina_embeddings_v2_base_en
Index Type
hnsw
The results also indicated that the method had the highest accuracy for different types of images (98.58% ultrasound, 93.063% mammography, and 100% thermography). The highest accuracy in the SVM method was observed in the results of a research, which used an appropriate segmentation method for obtaining the desired area in the image. The shape and intensity of the extracted features had the most effect in the classification. The combination of gray-level co-occurrence matrix (GLCM) and Pratio features along with morphological features resulted in the highest accuracy.
id: 146ba0c98620195b9b10ef92da1e9333 - page: 7
Discussion Computerized diagnosis of breast cancer has a number of great advantages; thus, it is constantly being used by Breast Cancer Targets and Therapy 2018:10 Dovepress e c n e r e f e R 5 3 6 3 d e t r o p e R e c n a m r o f r e p 1 9 0 9 . : y c a r u c c A 2 8 1 8 . : y t i v i t i s n e S 0 0 1 : y t i c fi c e p S i 5 8 5 9 . : y c a r u c c A 6 9 : y t i v i t i s n e S 6 4 1 9 . : y t i c fi c e p S i s e g a t n a v d a s i D s s e g a t n a v d A n o i t c a r t x e e r u t a e f e r o f e b t e l e v r u c f o e s U l a c i g o o h p r o m d n a l l a r u t x e t d e n b m o C i s e r u t a e f m e t s y s S U f o s g n i t t e s f o t n e d n e p e d n g n e B i s i s o n g a i d e h t n s e n h c a m S U i t n e r e f f i d r o r e c n a c t s a e r b g n i y f i s s a l c r o f s e u q n h c e t i s e t u b i r t t A : s e r a u q s f
id: 2d0c01a8d1479732cb829df26ceb9c46 - page: 7
: y c a r u c c A l a c i t c a r p n I s n o i s n e m d i l a t c a r f f
id: a40217d01968f6ffa057d44a8d22656f - page: 8
: y t i v i t i s n e S , s m e b o r p l n o i t a c fi i s s a l c n o i t a c fi i s s a l c s s a l c o w t g n i v l o s n i l u f r e w o P ) 1 = d ( n o i t a l e r r o c f o e r u s a e m 8 0 6 9 . : y t i c fi c e p S i e h t f o s t c e f f e e h t m e b o r p l n o i t a l e r r o c m u m x a m n a e m e h t i n i e c n a t s i d l e x p i e n O g n n i a r t i n i s e p m a s l n a c e p m a s l g n n i a r t i e h t f o e c n a t r o p m e h T ) 1 = d ( t n e i c fi f e o c e b y a m t e s a t a d p h s r e b m e m y z z u f i e h t y b d e r u s a e m e b s e p o r t n e i t n e r e f f i d f o e g n a r e h t n i e c n a t s i d l e x p i e n O t n e r e f f i d ) 1 = d ( ) 2 = d ( s e g n a r e c n a i r a v e h t
id: cf919a7cd5d466e3ff0bae6d68a10b9e - page: 8
How to Retrieve?
# Search

curl -X POST "https://search.dria.co/hnsw/search" \
-H "x-api-key: <YOUR_API_KEY>" \
-H "Content-Type: application/json" \
-d '{"rerank": true, "top_n": 10, "contract_id": "0vedd5h114DdTWW1F9rXDoWr2H2e-ksfqIdKpGZyPAo", "query": "What is alexanDRIA library?"}'
        
# Query

curl -X POST "https://search.dria.co/hnsw/query" \
-H "x-api-key: <YOUR_API_KEY>" \
-H "Content-Type: application/json" \
-d '{"vector": [0.123, 0.5236], "top_n": 10, "contract_id": "0vedd5h114DdTWW1F9rXDoWr2H2e-ksfqIdKpGZyPAo", "level": 2}'