Created at 8pm, Mar 26
Ms-RAGScience
0
Aperiodic approximants bridging quasicrystals and modulated structures
2BcHDA2aJj7r_zSQAfpMkN9j97d3nIWzdMYnyeusjvk
File Type
PDF
Entry Count
93
Embed. Model
jina_embeddings_v2_base_en
Index Type
hnsw

Toranosuke Matsubara,1 Akihisa Koga,1 Atsushi Takano,2 Yushu Matsushita,3 and Tomonari Dotera41-Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan2-Department of Molecular and Macromolecular Chemistry,Nagoya University, Nagoya, Aichi 464-8603, Japan3-Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192, Japan4-Department of Physics, Kindai University, Higashi-Osaka, Osaka 577-8502, JapanAperiodic crystals constitute a fascinating class of materials that includes incommensurate (IC) modulated structures [1, 2] and quasicrystals (QCs) [3–8]. Although these two categories share a common foundation in the concept of superspace, the relationship between them has remained enigmatic and largely unexplored. Here, we show “any metallic-mean” QCs [9–11], surpassing the confines of Penrose-like structures, and explore their connection with IC modulated structures. In contrast to periodic approximants of QCs [12, 13], our work introduces the pivotal role of “aperiodic approximants” [14], articulated through a series of k-th metallic-mean tilings serving as aperiodic approximants for the honeycomb crystal, while simultaneously redefining this tiling as a metallicmean IC modulated structure, highlighting the intricate interplay between these crystallographic phenomena. We extend our findings to real-world applications, discovering these unique tiles in a terpolymer/homopolymer blend [15] and applying our QC theory to a colloidal simulation displaying planar IC structures [16, 17]. In these structures, domain walls are viewed as essential components of a quasicrystal, introducing additional dimensions in superspace. Our research provides a fresh perspective on the intricate world of aperiodic crystals, shedding light on their broader implications for domain wall structures across various fields [18, 19].

3SupplementaryNote2FractionsoftheverticesWederivethefractionsofverticesfork=1(thefractionsfork=1havebeengiveninRef1).Inthecaseofk=1,wecouldnotfindtheFvertexsharedbysixPtiles(fF=0).ThisisbecauseverticessharedbytwoadjacentPtilesarealwayssharedbytheLorStileaccordingtothesubstitutionrulesfork=1,asshowninSupplementaryFigs.1c - 1f.Whenoneevaluatesthefractionsforcertaingraphssuchasverticesanddomains,itisconvenienttoconsidertheratiobetweennumbersoftilesandverticesforthehexagonalmetallic - meantilinginthethermodynamiclimit.SupplementaryFigure1aclearlyshowsthatthenetnumbersofsitesinL,P,andStilesaretwo,one,andtwo,respectively.Therefore,weobtaintheratiorkasrk=2fL+fP+2fS=Pk Pk.(9) Pk.(3)Thisnaturallyleadstothesublatticeimbalanceinthehexagonalmetallic - meantilings,=fAfB=1
id: af0d574578544de2a2ba9815d9b529de - page: 14
2k+6k+1,(1)wherePk=22k+6k+2.Wefirstfocusonthebipartitestructure.ThesublatticestructuresfortheL,P,andStilesareshownastheopenandsolidcirclesinSupplementaryFig.1a,wherethesearereferredtoasAandBsublattices.BycountingthenetnumbersofthesitebelongingtoeachsublatticeinL,P,andStiles,weobtainitsfractionsas,fA=1 3fP+fS(cid:19)=1 3fP+fS(cid:19)=1 rk=3
id: e03f4c64b7ab3e6cce9ea921b09e9ba3 - page: 14
(4)SincethesublatticeA(B)iscomposedofC1,C2,andC3(C0,D0,D1,andE)vertices,weobtainthefollowingequations,fA=fC1+fC2+fC3,(5)fB=fC0+fD0+fD1+fE.(6)Inthetilings,twoadjacenttilessharetheedge,whichisconnectedbetweentheneighboringsitesinAandBsublattices.Therefore,weobtaintheequationsforthetotalnumberoflongerandshorteredges,3fC1+2fC2+fC3=3fC0+3fD0+2fD1+3fE,(7)fC2+2fC3=fD0+2fD1+2fE,(8)wheretheleft(right)handsideoftheequationsrepresentsthetotalnumberofedges,whichisexpressedbythenumbersofverticesbelongingtotheA(B)sublattice.Accordingtothesubstitutionrule,theC3,D1,andEverticesalwaysappeararoundtheStilefork=1.Therefore,thesefractionsarethengivenasfC3=fD1=fE=3fS rk(cid:18)fL+2 rk(cid:18)fL+1 2+k 2k 4k+1 2Pk(3k),(11)fC2=3 Pk(6k)(k=1),(14)fD1=3 2Pk(277k)(k=1),(10)fC1=1 Pk.(18)Inthehexagonalmetallic - meantilings,theaverageofthecoordinationnumberdependsonk.zk3whenthesystemapproachesthehoneycomblatticek. 451(k=1)3 451(k=1)3 Pk,(15)fE=3 2k3 2k3 Pk(4k),(12)fC3=3 27 25 2k+3(k3)
id: bff70bc4b44fa17b04f19c8fef748db6 - page: 14
4Fromtheseequations,weobtaintheexactfractionsofverticesinthehexagonalmetallic - meantilingsasfC0=(0(k=1)1 4k+5 Pk(k=1),(16)fF=1 5 471(k=1)0(k=1).(17)Theaverageofthecoordinationnumberisgivenbyzk=3XifCi+4XifDi+5fE+6fF=3+3 Pk,(13)fD0=3 5SupplementaryNote3Honeycombdomain 2k,(23)wherefXistheratioofthenumberofX(=,i,)domainstothetotalnumberoftiles.SincefL=ak1f+akP2i=0fi+ak+1f,weprovethateachLtilebelongsto,i(i=0,1,2)ordomain,and3domainsneverappearinthehexagonalmetallic - meantilingwithk=1.Asforthegolden - meantilingwithk=1,and0domainsdonotappear,but3domainsappearduetotheexistenceoftheFvertices.Thefractionsofthe1,2,and 1 0 2k,(19)f0=rkfC0 2k,(21)f2=rkfE
id: b8dcf27cdaa9efda0742229de1e22e98 - page: 15
How to Retrieve?
# Search

curl -X POST "https://search.dria.co/hnsw/search" \
-H "x-api-key: <YOUR_API_KEY>" \
-H "Content-Type: application/json" \
-d '{"rerank": true, "top_n": 10, "contract_id": "2BcHDA2aJj7r_zSQAfpMkN9j97d3nIWzdMYnyeusjvk", "query": "What is alexanDRIA library?"}'
        
# Query

curl -X POST "https://search.dria.co/hnsw/query" \
-H "x-api-key: <YOUR_API_KEY>" \
-H "Content-Type: application/json" \
-d '{"vector": [0.123, 0.5236], "top_n": 10, "contract_id": "2BcHDA2aJj7r_zSQAfpMkN9j97d3nIWzdMYnyeusjvk", "level": 2}'