Created at 6am, Jan 5
xnMugOcICrypto
0
LSTM MODEL İN BTC
_rJjdAlJXTjHJW4mY0j6yBoCLzO13YxqhMgyLJ0Eyi4
File Type
PDF
Entry Count
12
Embed. Model
jina_embeddings_v2_base_en
Index Type
hnsw

It's a very exciting topic. I think this topic can be improved with better software.

Anahtar Kelimeler: LSTM, bitcoin, kripto para, sinir a, tahminleme JEL Kodlar: C53, C45, G10 _____________________________________________________________________________________________________ DOI: 10.17261/Pressacademia.2023.1804 247 PressAcademia Procedia 9th Global Business Research Congress (GBRC 2023), V.17, 247-248 Polat, Koy REFERENCES Ahmet, S. E. L., Zengin, N., & Yildiz, Z. (2020). Alternatif yatrm aralar ile bitcoin fiyatlar arasndaki ilikinin yapay sinir a ile tahmini. Cumhuriyet niversitesi ktisadi ve dari Bilimler Dergisi, 21(2), 157-169. Alpago, H.
id: 07caa97afa66f8815182a620e118a84a - page: 1
(2018). Bitcoin'den selfcoin'e kripto para. Uluslararas Bilimsel Aratrmalar Dergisi , 3 (2), 411428. Andi, HK (2021). LSTM makine renimi modeliyle lojistik regresyon kullanarak doru bir bitcoin fiyat tahmini. Yumuak Hesaplama Paradigmas Dergisi, 3(3), 205-217. Buchholz, M., Delaney, J., Warren, J. P. J., & Parker, J. (2012). Bits and bets nformation, price volatility, and demand for Bitcoin. Economics, 312, 2-48. Ceballos, L. E. F., Gmez, L. M. J., Gonzales, C. D. C. P., & Torres, G. A. A. (2017). Revisin de investigaciones empricas sobre la aplicacin del anlisis tcnico en los mercados financieros. Review of Empirical Research on the Application of Technical Analysis in Financial Markets, (7), 113-125. Chen, J. (2023). Analysis of bitcoin price prediction using machine learning. Journal of Risk and Financial Management, 16(1), 51.
id: c42679cd3ff76e82e08ac9759d579b28 - page: 2
Chen, Z., Li, C. ve Sun, W. (2020). Makine renimini kullanarak Bitcoin fiyat tahmini: rnek boyut mhendisliine bir yaklam. Hesaplamal ve Uygulamal Matematik Dergisi, 365 , 112395. Computation, N. (2016). Long short-term memory. Neural Computation, 9, 1735-1780. De Bondt, W. F., & Thaler, R. (1985). Does the stock market overreact? The Journal of Finance, 40(3), 793-805. Hamayel, M. J., & Owda, A. Y. (2021). A novel cryptocurrency price prediction model using GRU, LSTM and bi-LSTM machine learning algorithms. AI, 2(4), 477-496. Huang, X., Zhang, W., Tang, X., Zhang, M., Surbiryala, J., Iosifidis, V., ... & Zhang, J. (2021). Lstm based sentiment analysis for cryptocurrency prediction. In Database Systems for Advanced Applications: 26th International Conference, DASFAA 2021, Taipei, Taiwan, April 1114, 2021, Proceedings, Part III 26 (pp. 617-621). Springer International Publishing.
id: 73985ba9b459608d20601be97da71437 - page: 2
Jin, Z., Yang, Y., & Liu, Y. (2020). Stock closing price prediction based on sentiment analysis and LSTM. Neural Computing and Applications, 32, 9713-9729. Karevan, Z., & Suykens, JA (2020). Zaman serisi tahmini iin transdktif LSTM: Hava tahmini iin bir uygulama. Sinir Alar, 125 , 1-9. Kwon, D. H., Kim, J. B., Heo, J. S., Kim, C. M., & Han, Y. H. (2019). Time series classification of cryptocurrency price trend based on a recurrent LSTM neural network. Journal of Information Processing Systems, 15(3), 694-706. Kwon, DH, Kim, JB, Heo, JS, Kim, CM ve Han, YH (2019). Tekrarlayan bir LSTM sinir ana dayal kripto para birimi fiyat eiliminin zaman serisi snflandrmas. Bilgi lem Sistemleri Dergisi, 15 (3), 694-706. Latif, N., Selvam, JD, Kapse, M., Sharma, V., & Mahajan, V. (2023). Bitcoin fiyatlarnn ksa vadeli tahmini iin lstm ve arima'nn karlatrmal performans. Australasian Accounting, Business and Finance Journal, 17 (1), 256-276.
id: c0d4d9c28e6a6f379e18aed2e23129e8 - page: 2
How to Retrieve?
# Search

curl -X POST "https://search.dria.co/hnsw/search" \
-H "x-api-key: <YOUR_API_KEY>" \
-H "Content-Type: application/json" \
-d '{"rerank": true, "top_n": 10, "contract_id": "_rJjdAlJXTjHJW4mY0j6yBoCLzO13YxqhMgyLJ0Eyi4", "query": "What is alexanDRIA library?"}'
        
# Query

curl -X POST "https://search.dria.co/hnsw/query" \
-H "x-api-key: <YOUR_API_KEY>" \
-H "Content-Type: application/json" \
-d '{"vector": [0.123, 0.5236], "top_n": 10, "contract_id": "_rJjdAlJXTjHJW4mY0j6yBoCLzO13YxqhMgyLJ0Eyi4", "level": 2}'