Created at 12pm, Mar 27
Ms-RAGScience
0
The lunar cycle: Effects on human and animal behavior and physiology
krqfnTDpzoDa9dnMpxWgP3ZP76o8HzDNs1YPTab-VMU
File Type
PDF
Entry Count
52
Embed. Model
jina_embeddings_v2_base_en
Index Type
hnsw

SummaryHuman and animal physiology are subject to seasonal, lunar, and circadian rhythms. Although the seasonal and circadian rhythms have been fairly well described, little is known about the effects of the lunar cycle on the behavior and physiology of humans and animals. The lunar cycle has an impact on human reproduction, in particular fertility, menstruation, and birth rate. Melatonin levels appear to correlate with the menstrual cycle. Admittance to hospitals and emergency units because of various causes (cardiovascular and acute coronary events, variceal hemorrhage, diarrhea, urinary retention) correlated with moon phases. In addition, other events associated with human behavior, such as traffi c accidents, crimes, and suicides, appeared to be infl uenced by the lunar cycle. However, a number of reports fi nd no correlation between the lunar cycle and human reproduction and admittance to clinics and emergency units. Animal studies revealed that the lunar cycle may affect hormonal changes early in phylogenesis (insects). In fi sh the lunar clock influences reproduction and involves the hypothalamus-pituitary-gonadal axis. In birds, the daily variations in melatonin and corticosterone disappear during full-moon days. The lunar cycle also exerts effects on laboratory rats with regard to taste sensitivity and the ultrastructure of pineal gland cells. Cyclic variations related to the moon’s phases in the magnitude of the humoral immune response of mice to polivinylpyrrolidone and sheep erythrocytes were also described. It is suggested that melatonin and endogenous steroids may mediate the described cyclic alterations of physiological processes. The release of neurohormones may be triggered by the electromagnetic radiation and/or the gravitational pull of the moon. Although the exact mechanism of the moon’s infl uence on humans and animals awaits further exploration, knowledge of this kind of biorhythm may be helpful in police surveillance, medical practice, and investigations involving laboratory animals.

Maximal melatonin concentrations tended to decline in older birds (1019 years). The birds showed a clear diurnal variation in basal plasma corticosterone, with a peak in the early morning, before the active period begins, and low concentrations throughout the day. As in the case of melatonin, there were no diurnal variations in corticosterone at full moon, which may be due, as the authors suggest, to different activity patterns in response to food availability or changes in the circadian system. No correlation between corticosterone and melatonin levels were found. The authors conclude that the lunar cycle affects the hormone levels in Nazca boobies both directly and indirectly. First, melatonin rhythms can be directly affected by the light intensity associated with the full moon. Second, prey availability may change foraging patterns and can therefore i
id: 2e6a1e1589e4cadbf5ad9538fa2ea00f - page: 5
4 Mammals
id: d710871780952608bc0ee595dc1c2e20 - page: 5
Even in mammals, data on the effects of light/dark, seasonal, and lunar cycles on physiology are scant. Investigations were carried out mostly in rodents. In the Indian palm squirrel Funambulus pennanti, seasonal changes in several immune parameters, such as total blood leukocytes, blastogenic response of blood, and thymus and spleen lymphocytes were studied . The authors found that, in parallel with melatonin, all the parameters increased during the months of April to November. The lowest values occurred during January to March (reproductively active phase). Injection of melatonin during their inactive phase (March) increased all the immune parameters, while pinealectomy during November decreased them signi cantly. The authors suggest that melatonin is immuno-enhancing for this tropical squirrel. Studying a rat strain with individual differences in the threshold of excitability of the nervous system, researchers found that excitable rats showed rhythmical changes
id: 1af6dd70cb3e84f18044c983412b4eaa - page: 5
Others investigated the in uence of light/dark, seasonal, and lunar cycles on serum melatonin levels and synaptic bodies, ultrastructural organelles, of the pineal gland of the rat . The experiment was carried out in winter and repeated in spring. Each season, one group of animals was killed during the new moon and a second group during the full moon days; in addition, half of both groups was studied in the photophase and the other half in the scotophase. The results showed that the number of synaptic ribbons (a type of synaptic body) and serum melatonin levels were higher during scotophases, winter, and full moon days. The synaptic spherules (another type of synaptic body) showed a light predominance during winter, whereas a predominance of intermediate synaptic bodies was found only during scotophases.
id: dfdf6741e309cbf7e200e87ac3e75e42 - page: 5
How to Retrieve?
# Search

curl -X POST "https://search.dria.co/hnsw/search" \
-H "x-api-key: <YOUR_API_KEY>" \
-H "Content-Type: application/json" \
-d '{"rerank": true, "top_n": 10, "contract_id": "krqfnTDpzoDa9dnMpxWgP3ZP76o8HzDNs1YPTab-VMU", "query": "What is alexanDRIA library?"}'
        
# Query

curl -X POST "https://search.dria.co/hnsw/query" \
-H "x-api-key: <YOUR_API_KEY>" \
-H "Content-Type: application/json" \
-d '{"vector": [0.123, 0.5236], "top_n": 10, "contract_id": "krqfnTDpzoDa9dnMpxWgP3ZP76o8HzDNs1YPTab-VMU", "level": 2}'